Extended UNIQUAC model

Extended UNIQUAC model

The Extended UNIQUAC model for electrolyte solutions is presented here in its current form as it was presented by Thomsen (1997) (ref 1). Previous versions of the model used composition dependent interaction parameters and included more terms (ref. 2 and 3). The model has proven itself applicable for calculations of vapor-liquid-liquid-solid equilibria and of thermal properties in aqueous solutions containing electrolytes and non-electrolytes. The extended UNIQUAC model consists of three terms: a combinatorial or entropic term, a residual or enthalpic term and an electrostatic term

The combinatorial and the residual terms are identical to the terms used in the traditional UNIQUAC equation (ref 4 and 5). The electrostatic term corresponds to the extended Debye-Hückel law. The combinatorial, entropic term is independent of temperature and only depends on the relative sizes of the species:

z = 10 is the co-ordination number. xi is the mole fraction,  is the volume fraction, and θi is the surface area fraction of component i:

The two model parameters ri and qi are the volume and surface area parameters for component i. In the classical application of the UNIQUAC model, these parameters are calculated from the properties of non electrolyte molecules (ref 4). This was not the case for the volume and surface area parameters for water. In the Extended UNIQUAC application to multi component electrolyte solutions, this approach gave unsatisfactory results.  The main component in these solutions is usually water. As the volume and surface parameters of water were rather fixed than calculated, it made sense to  consider the volume and surface area parameters  of ions to be adjustable parameters. The values of these two parameters for each ion are determined by fitting to experimental data. Especially thermal property data such as heat of dilution and heat capacity data are efficient for determining the value of the surface area parameter q, because the UNIQUAC contribution to the excess enthalpy and excess heat capacity is proportional to the parameter q. The residual, enthalpic term is dependent on temperature through the parameter ψji:

the parameter ψji is given by:

uji and uii are interaction energy parameters. The interaction energy parameters are considered symmetrical and temperature dependent in this model.  

The values of the interaction energy parameters  and  are determined by fitting to experimental data. By partial molar differentiation of the combinatorial and the residual UNIQUAC terms, the combinatorial and the residual parts of the rational, symmetrical activity coefficients are obtained:

The infinite dilution terms are obtained by setting xw = 1 in the above equation:  

The combinatorial and the residual terms of the UNIQUAC excess Gibbs energy function are based on the rational, symmetrical activity coefficient convention. The Debye-Hückel electrostatic term however is expressed in terms of the rational, symmetrical convention for water, and the rational, unsymmetrical convention for ions.

The electrostatic contributions to the water activity coefficients and the ionic activity coefficients are obtained by partial molar differentiation of the extended Debye-Hückel law excess Gibbs energy term. The term used for water is

In this expression, b = 1.5 (kg/mol)½. The term used for ions is:  

Based on table values of the density of pure water, and the relative permittivity of water, εr, the Debye-Hückel parameter A can be approximated in the temperature range from 240 K to 540 K by a polynomial determined by Sander et al. (ref 2):

The activity coefficient for water is calculated in the Extended UNIQUAC model by summation of the three terms:

The activity coefficient for ion i is obtained as the rational, unsymmetrical activity coefficient according to the definition of rational unsymmetrical activity coefficients by adding the three contributions:

The rational, unsymmetrical activity coefficient for ions calculated with the Extended UNIQUAC model can be converted to a molal activity coefficient by use of its definition which can be seen here.  This is relevant for comparison with experimental data.

The temperature dependency of the activity coefficients in the Extended UNIQUAC model for electrolyte solutions is built into the model equations as outlined above. The temperature dependency of the equilibrium constants used in the Extended UNIQUAC model is calculated from the temperature dependency of the Gibbs energies of formation of the species Parameters for water and for the following ions can be found in Thomsen (1997) (ref 1) H+, Na+, K+, NH4+, Cl, SO42-, HSO4, NO3, OH, CO32-, HCO3, S2O82-. Parameters and model modifications for gas solubility at pressures up to 100 bar in aqueous electrolyte systems have later been published (refs 6 and 7). Also phase equilibria for systems containing non-electrolytes are described by the model, including liquid-liquid equilibria (refs 8 and 9). Besides, parameters have been determined for systems containing heavy metal ions (ref 10).

A.V. Garcia included the pressure dependence of the solubility of salts in the model. Two parameters for the pressure dependence of the solubility product of each salt were introduced in order to achieve this (refs 11 and 12). A significant advantage of the Extended UNIQUAC model for electrolyte solutions compared to models like the Bromley model or the Pitzer model is that temperature dependence is built into the model. This enables the model to also describe thermodynamic properties that are temperature derivatives of the excess Gibbs function, such as heat of mixing and heat capacity.

  1. Thomsen, K., Aqueous electrolytes: model parameters and process simulation, Ph.D. Thesis, Department of Chemical Engineering, Technical University of Denmark, 1997. https://doi.org/10.11581/dtu:00000074
  2. Sander, Bo, Peter Rasmussen, and Aage Fredenslund. “Calculation of vapour-liquid equilibria in nitric acid-water-nitrate salt systems using an extended UNIQUAC equation.” Chemical engineering science 41, no. 5 (1986): 1185-1195. https://doi.org/10.1016/0009-2509(86)87091-9
  3. B. Sander; P. Rasmussen and Aa. Fredenslund, “Calculation of Solid-Liquid Equilibria in Aqueous Solutions of Nitrate Salts Using an Extended UNIQUAC Equation”. Chemical Engineering Science, 41(1986)1197-1202. https://doi.org/10.1016/0009-2509(86)87092-0
  4. Abrams D.S. and Prausnitz J.M., “Statistical thermodynamics of liquid mixtures: A new expression for the excess Gibbs energy of partly or completely miscible systems”, AIChE journal 21(1975)116-128. https://doi.org/10.1002/aic.690210115
  5. Maurer G., Prausnitz J.M., ”On the derivation and extension of the UNIQUAC equation”, Fluid Phase Equilibria, 2(1978)91-99. https://doi.org/10.1016/0378-3812(78)85002-X
  6. Thomsen K and Rasmussen P, “Modeling of Vapor-liquid-solid equilibrium in gas-aqueous electrolyte systems” Chemical Engineering Science 54(1999)1787-1802. https://doi.org/10.1016/S0009-2509(99)00019-6
  7. Pereda S, Thomsen K, Rasmussen P, “Vapor-Liquid-Solid Equilibria of Sulfur Dioxide in Aqueous Electrolyte Solutions” Chemical Engineering Science 55(2000)2663-2671. https://doi.org/10.1016/S0009-2509(99)00535-7
  8. Iliuta MC, Thomsen K, Rasmussen P, “Extended UNIQUAC model for correlation and prediction of vapor-liquid-solid equilibrium in aqueous salt systems containing non-electrolytes. Part A. Methanol – Water – Salt systems”  Chemical Engineering Science 55(2000)2673-2686. https://doi.org/10.1016/S0009-2509(99)00534-5
  9. Thomsen K, Iliuta MC, Rasmussen P, “Extended UNIQUAC model for correlation and prediction of vapor-liquid-liquid-solid equilibria in aqueous salt systems containing non-electrolytes. Part B. Alcohol (Ethanol, Propanols, Butanols) – water – salt systems“ Chemical Engineering Science 59(2004)3631-3647. https://doi.org/10.1016/j.ces.2004.05.024
  10. Iliuta MC, Thomsen K, Rasmussen P, “Modeling of heavy metal salt solubility using the extended UNIQUAC model” AIChE Journal, 48(2002)2664-2689. https://aiche.onlinelibrary.wiley.com/doi/epdf/10.1002/aic.690481125
  11. Garcia AV, Thomsen K, Stenby EH, “Prediction of mineral scale formation in geothermal and oilfield operations using the extended UNIQUAC model Part I. Sulfate scaling minerals” Geothermics 34(2005)61-97. https://doi.org/10.1016/j.geothermics.2004.11.002
  12. Garcia AV, Thomsen K, Stenby EH, ”Prediction of mineral scale formation in geothermal and oilfield operations using the extended UNIQUAC model Part II. Carbonate scaling minerals”, Geothermics, 35(2006)239-284. https://doi.org/10.1016/j.geothermics.2006.03.001
Scroll to Top

We are using cookies to give you the best possible experience. By using our site you agree to our use of cookies.